Math (KaTex)
Jul 15, 2024
Powered by KaTeX
The equation $Q = rho A v + C$ defines the glacial flow rate.
$ 7.32 beta + sum_(i=0)^nabla Q_i / 2 $
$ Q = rho A v + "time offset" $
$ 7.32 beta + sum_(i=0)^nabla (Q_i (a_i - epsilon)) / 2 $
$ v := vec(x_1, x_2, x_3) $
$ a arrow.squiggly b $
$$ f(x) = \int_{-\infty}^\infin \hat f(\xi) e^{2 \pi i \xi x}\ d\xi $$
When $ a \ne 0 $, there are two solutions to $ (ax^2 + bx + c = 0) $ and they are $$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$
The Cauchy-Schwarz Inequality
$$\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$